Skip to content

Thermal and Electrical Data

Thermal Expansion Coefficient (TEC)

The Thermal Expansion Coefficient for a given material is a measure of the fractional change in length per degree change in temperature. The coefficient itself slightly changes with temperature and is most commonly reported as an average value for the temperature range of interest, typically room temperature to 100° C. A ranking for a group of materials available from Hamilton Precision Metals follows.


Metal Alloy TEC 106/° C Temperature Range
Shunt Manganin 18.7 20° to 100°C
Phosphor Bronze A 17.8 20° to 300°C
Beryllium Copper 25 17.5 20° to 200°C
SS 302/304/304L 17.3 0° to 100°C
SS 305 17.3 0° to 100°C
Copper 102 17.0 20° to 100°C
SS 301 16.9 0° to 100°C
Nickel Silver 55-18 16.7 20° to 300°C
Cu-Ni 715 16.2 20° to 300°C
SS 316/316L 16.0 0° to 100°C
Balco 15.0 20° to 100°C
Constantan 14.9 20° to 100°C
HPM Beryllium Nickel 14.4 20° to 550°C
HPM 600 14.2 20° to 315°C
HPM 400 13.9 20° to 100°C
HPM 80/20 A - 80/20AL 13.4 20° to 100°C
HPM Nickel 200/201/270 13.3 0° to 100°C
Evanohm®R/S 13.0 20° to 100°C
Moly Permalloy 12.7 25° to 200°C
HPM X 750 12.6 20° to 100°C
Havar 12.5 0° to 50°C
HPM C-276 11.2 25° to 100°C
SS 410 11.0 0° to 100°C
SS 17-4 PH (HT) 10.8 21° to 93°C
HPM 455 10.6 22° to 93°C
SS 430 10.5 0° to 100°C
SS 420 10.3 0° to 100°C
SS 17-7 PH 10.3 21° to 93°C
Precision C 10.1 30° to 200°C
HPM Ni 52 10.0 30° to 500°C
CP Titanium 8.6 0° to 100°C
Precision C 8.1 -45° to 65°C
HPM Ni 42 6.0 30° to 400°C
Rodar 4.9 30° to 400°C
HPM Ni 36 1.05 20° to 200°C
Electrical Resistivity
Resistivity characterizes a metal's inherent capacity to support the flow of electrical current. The measured resistivity is the inverse of electrical conductivity and is expressed in Microhm•cm.

Conversion to other common units for resistivity are as follows:
  • 1 Microhm•cm = 6.015 ohms CMF (ohms circular mil per foot)
  • 1 Microhm•cm = 4.724 ohms SMF (ohms square mil per foot)
A ranking for a group of metals available from HPM is as follows:

Metal / Alloy Resistivity @ R.T. Microhm • cm
Copper 102 1.71
HPM Nickel 270 7.5
Beryllium Copper 25 7.8
HPM Nickel 201 8.5
HPM Nickel 200 9.5
Phosphor Bronze A 11.5
Balco 19.9
HPM Beryllium Nickel 28.7
Nickel Silver 55-18 31.4
Shunt Manganin 38.1
Cu-Ni 715 39.5
HPM Ni 52 43.0
Rodar 49.0
Constantan 50.8
HPM 400 51.0
SS 420 55.0
CP Titanium 56.0
SS 410 57.0
Moly Permalloy 59.0
SS 430 60.0
HPM Ni 42 70.0
SS 301 72.0
SS 302/304/304L 72.0
SS 305 74.0
SS 316/316L 74.0
HPM 455 79.0
SS 17-4 PH (HT) 80.0
HPM Ni 36 82.0
SS 17-7 PH 83.0
Havar 92.0
Precision C 102.0
HPM 600 103.0
HPM 80/20 A - 80/20 AL 108.0
HPM X 750 119.0
HPM C-276 130.0
Evanohm®R 133.0
Evanohm®S 137.0
Thermal Conductivity
Thermal Conductivity describes the inherent capacity of a metal to support the flow of thermal energy. Thermal Conductivity is expressed in W/m•K (Watts per meter degree Kelvin).

Conversion to other common units of Thermal Conductivity are as follows:
  • 1 W/m•K = .5782 BTU • FT/HR • FT2 • °F
  • 1 W/m•K = .0024 Cal/cm.s. °C
A ranking for a group of metals available from HPM is as follows:

Metal / Alloy W/m•K @ R.T.
Copper 102 390.0
Beryllium Copper 25 105.0
HPM Nickel 270 79.0
HPM Nickel 201 74.0
Phosphor Bronze A 69.2
HPM Nickel 200 67.0
HPM Beryllium Nickel 48.4
Moly Permalloy 34.6
Cu Ni 715 29.4
Nickel Silver 55-18 29.3
Balco 28.9
SS 430 26.1
SS 410/420 24.9
HPM 400 21.8
Constantan 21.2
Shunt Manganin 19.8
HPM 455 18.0
SS 17-4 PH (HT) 17.9
Rodar 16.7
SS 17-7 PH 16.7
SS 301 16.3
SS 302/304/304L 16.3
SS 316/316L 16.3
SS 305 16.2
CP Titanium 16.0
HPM 80/20 A - 80/20 AL 15.0
HPM 600 14.8
Evanohm®R/S 14.6
HPM Ni 52 14.0
Precision C 13.0
Havar 13.0
HPM X 750 12.0
HPM Ni 42 10.7
HPM Ni 36 10.5
HPM C-276 9.4
Contact an Expert